
Security Audit Report for
Metapool-ethereum

Date: Jul 10, 2023

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Denial of Service by Uninitialized System Parameters 4

2.2 DeFi Security . 5

2.2.1 Lack of Check for rewardsFee . 5

2.2.2 Denial of Service by Redundant Check . 6

2.2.3 Stolen User’s Assets by Loss of Precision . 6

2.2.4 Lack of Check on Duplicate Nodes . 7

2.2.5 Incorrect Event Parameter . 8

2.3 Additional Recommendation . 9

2.3.1 Incorrect Annotation in updateNodesBalance() . 9

2.3.2 Lack of Check on Address . 9

2.3.3 Failure to Adhere to Checks-Effects-Interactions Pattern 10

2.4 Notes . 11

2.4.1 Potential Centralization Problem . 11

2.4.2 Timely Triggering of Privileged Function pushToBeacon() 11

2.4.3 Challenges in Achieving Real-time and Accurate Updates of Staking Rewards on

Beacon Chain . 11

2.4.4 Withdrawals might be Delayed if the Ethereum Network is Congested 12

i

Report Manifest

Item Description
Client Metapool
Target Metapool-ethereum

Version History

Version Date Description
1.0 July 10, 2023 First Version

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The repository that has been audited includes Metapool-ethereum 1.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA

Metapool
Version 1 c448ad22a85596e72ecea75f25cc8fa1797e077a
Version 2 8f4f9b179e2abe511ddffd9ab181744bff9addba

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit

report include Metapool-ethereum/contracts folder contract only. Specifically, the files covered in this

audit include:

- contracts/interfaces/IDeposit.sol

- contracts/interfaces/IWeth.sol

- contracts/interfaces/IERC4626Router.sol

- contracts/ERC4626Router.sol

- contracts/LiquidUnstakePool.sol

- contracts/Staking.sol

- contracts/Withdrawal.sol

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

1https://github.com/Meta-Pool/metapool-ethereum/

1

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Access control

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find six potential issues. Besides, we have three recommendations and four notes as

follows:

- High Risk: 0

- Medium Risk: 2

- Low Risk: 4

- Recommendations: 3

- Notes: 4

ID Severity Description Category Status

1 Low
Denial of Service by Uninitialized System Pa-
rameters

Software Security Fixed

2 Medium Lack of Check for rewardsFee DeFi Security Fixed
3 Medium Denial of Service by Redundant Check DeFi Security Fixed
4 Low Stolen User’s Assets by Loss of Precision DeFi Security Fixed
5 Low Lack of Check on Duplicate Nodes DeFi Security Fixed
6 Low Incorrect Event Parameter Software Security Fixed
7 - Incorrect Annotation in updateNodesBalance() Recommendation Fixed
8 - Lack of Check on Address Recommendation Fixed

9 -
Failure to Adhere to Checks-Effects-
Interactions Pattern

Recommendation Fixed

10 - Potential Centralization Problem Note Confirmed

11 -
Timely Triggering of Privileged Function push-
ToBeacon()

Note Confirmed

12 -
Challenges in Achieving Real-time and Accu-
rate Updates of Staking Rewards on Beacon
Chain

Note Confirmed

13 -
Withdrawals might be Delayed if the Ethereum
Network is Congested

Note Confirmed

The details are provided in the following sections.

2.1 Software Security

2.1.1 Denial of Service by Uninitialized System Parameters

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the Staking contract, state variables withdrawal and liquidUnstakePool are accessed in

privileged functions such as pushToBeacon() and updateNodeBalance(). However, they are not initialized

in the function initialize(). The values will be 0 by default if they are not configured in the functions

updateWithdrawal() and updateLiquidPool().

162 function updateWithdrawal(address payable _withdrawal)

4

163 external
164 onlyRole(DEFAULT_ADMIN_ROLE)
165 {
166 withdrawal = _withdrawal;
167 }

Listing 2.1: Staking.sol

171 function updateLiquidPool(address payable _liquidPool)
172 external
173 onlyRole(DEFAULT_ADMIN_ROLE)
174 {
175 if (_liquidPool == address(0)) revert ZeroAddress("liquidPool");
176 liquidUnstakePool = _liquidPool;
177 }

Listing 2.2: Staking.sol

Impact The user can still stake their funds, but withdrawals are not allowed. Besides, the whole protocol

will not work properly.

Suggestion Configure the withdrawal and liquidUnstakePool properly in the function initialize().

2.2 DeFi Security

2.2.1 Lack of Check for rewardsFee

Severity Medium

Status Fixed in in Version 2

Introduced by Version 1

Description In the function updateNodesBalance() of the contract Staking , if nodesTotalBalance in-

creases, a certain proportion of mpETH, calculated based on rewardsFee, will be charged and sent to the

treasury. This rewardsFee can be changed by the privileged role DEFAULT_ADMIN_ROLE via the function

updateRewardsFee(). However, there is no check to limit the maximum value of this system parameter.

181 function updateRewardsFee(uint16 _rewardsFee)
182 public
183 onlyRole(DEFAULT_ADMIN_ROLE)
184 {
185 rewardsFee = _rewardsFee;
186 }

Listing 2.3: Staking.sol

Impact The user may get no farming rewards earned from the Beacon Chain if the rewardsFee is 100% .

Suggestion Add a check to ensure the rewardsFee can never exceed a reasonable maximum value in

the function updateRewardsFee().

5

2.2.2 Denial of Service by Redundant Check

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the function getEthForValidator() of the contract LiquidUnstakePool, there is a check

assert(previousTotalAssets == totalAssets()).

If there is a precision loss during the Staking(STAKING).depositETH process, the checks in the assert

statement will not pass, resulting in a revert.

237 function getEthForValidator(uint _amount) external nonReentrant onlyStaking {
238 uint currentETHPercentage = (ethBalance * 10000) / totalAssets();
239 uint newEthPercentage = ((ethBalance - _amount) * 10000) / totalAssets();
240 if (newEthPercentage < minETHPercentage) {
241 uint availableETH = ((currentETHPercentage - minETHPercentage) *
242 totalAssets()) / 10000;
243 revert RequestedETHReachMinProportion(_amount, availableETH);
244 }
245 uint previousTotalAssets = totalAssets();
246 ethBalance -= _amount;
247 Staking(STAKING).depositETH{value: _amount}(address(this));
248 assert(previousTotalAssets == totalAssets());
249 emit SendETHForValidator(block.timestamp, _amount);
250 }

Listing 2.4: LiquidUnstakePool.sol

Impact Once loss of precision occurred during Staking(STAKING).depositETH, the function getEthForValidator()

will revert.

Suggestion Remove redundant checks.

2.2.3 Stolen User’s Assets by Loss of Precision

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The function redeem() allows the liquidity provider of the LiquidUnstakePool to redeem their

Ethers with rewards. However, if the variable _shares is too small, the poolPercentage may be rounded

down to 0 due to the precision loss.

173 function redeem(
174 uint _shares,
175 address _receiver,
176 address _owner
177) public virtual override nonReentrant returns (uint ETHToSend) {
178 if (msg.sender != _owner) {
179 _spendAllowance(_owner, msg.sender, _shares);
180 }
181 uint poolPercentage = (_shares * 1 ether) / totalSupply();

6

182 ETHToSend = (poolPercentage * ethBalance) / 1 ether;
183 uint mpETHToSend = (poolPercentage *
184 Staking(STAKING).balanceOf(address(this))) / 1 ether;
185 _burn(msg.sender, _shares);
186 payable(_receiver).sendValue(ETHToSend);
187 IERC20Upgradeable(STAKING).safeTransfer(_receiver, mpETHToSend);
188 ethBalance -= ETHToSend;
189 emit RemoveLiquidity(msg.sender, _shares, ETHToSend, mpETHToSend);
190 }

Listing 2.5: LiquidUnstakePool.sol

Impact When the variable _shares is too small, the user’s shares are burnt without receiving anything.

Suggestion Add a check to ensure that poolPercentage is greater than 0.

2.2.4 Lack of Check on Duplicate Nodes

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In Ethereum staking, depositing more than 32 Ethers to a single set of keys does not

increase rewards potential, nor does accumulating rewards above 32 Ethers. However, the function

pushBeacon() lacks a check to ensure if the node hasn’t been deposited before.

250 function pushToBeacon(Node[] memory _nodes, uint256 _requestPoolAmount, uint256
_requestWithdrawalAmount)

251 external
252 onlyOperational onlyRole(ACTIVATOR_ROLE)
253{
254 uint32 nodesLength = uint32(_nodes.length);
255 uint256 requiredBalance = nodesLength * 32 ether;
256 // TODO: Check exact amount of ETH needed to stake
257 if (
258 stakingBalance + _requestPoolAmount + _requestWithdrawalAmount <
259 requiredBalance
260)
261 revert NotEnoughETHtoStake(
262 stakingBalance,
263 _requestPoolAmount,
264 _requestWithdrawalAmount,
265 requiredBalance
266);
267
268 if (_requestPoolAmount > 0)
269 LiquidUnstakePool(liquidUnstakePool).getEthForValidator(_requestPoolAmount);
270 if (_requestWithdrawalAmount > 0)
271 Withdrawal(withdrawal).getEthForValidator(_requestWithdrawalAmount);
272
273 uint32 _totalNodesActivated = totalNodesActivated;
274
275 for (uint256 i = 0; i != nodesLength; ++i) {

7

276 depositContract.deposit{value: 32 ether}(
277 _nodes[i].pubkey,
278 _nodes[i].withdrawCredentials,
279 _nodes[i].signature,
280 _nodes[i].depositDataRoot
281);
282 _totalNodesActivated++;
283 emit Stake(_totalNodesActivated, _nodes[i].pubkey);
284 }
285
286 uint256 requiredBalanceFromStaking = requiredBalance - _requestWithdrawalAmount;
287 // Amount from Withdrawal isn’t included as this amount was never substracted from

nodesAndWithdrawalTotalBalance and never added to stakingBalance
288 stakingBalance -= requiredBalanceFromStaking;
289 nodesAndWithdrawalTotalBalance += requiredBalanceFromStaking;
290 totalNodesActivated = _totalNodesActivated;
291}

Listing 2.6: Staking.sol

Impact If deposit Ethers are deposited to duplicate nodes, the staking rewards will be less as expected.

Suggestion Add a checks to prevent depositing Ethers to duplicate nodes.

2.2.5 Incorrect Event Parameter

Severity Low

Status Fixed in Version 2

Introduced by Version 2

Description In the function withdraw() of the contract LiquidUnstakePool, The parameter within the

RemoveLiquidity event is incorrect. Based on the given event definition, the first event parameter should

be the _owner instead of the msg.sender.

150 function withdraw(
151 uint256 _assets,
152 address _receiver,
153 address _owner
154) public override returns (uint256 shares) {
155 shares = previewWithdraw(_assets);
156 if (msg.sender != _owner) _spendAllowance(_owner, msg.sender, shares);
157 uint256 poolPercentage = (_assets * 1 ether) / totalAssets();
158 if (poolPercentage == 0) revert AssetsTooLow();
159 uint256 ETHToSend = (poolPercentage * ethBalance) / 1 ether;
160 uint256 mpETHToSend = (poolPercentage * Staking(STAKING).balanceOf(address(this))) /
161 1 ether;
162 _burn(_owner, shares);
163 ethBalance -= ETHToSend;
164 IERC20Upgradeable(STAKING).safeTransfer(_receiver, mpETHToSend);
165 payable(_receiver).sendValue(ETHToSend);
166 emit RemoveLiquidity(msg.sender, shares, ETHToSend, mpETHToSend);
167 emit Withdraw(msg.sender, _receiver, _owner, ETHToSend, shares);
168 }

8

Listing 2.7: LiquidUnstakePool.sol

Impact Misconfigured event parameters can potentially lead to confusion and misinformation.

Suggestion Change emit RemoveLiquidity(msg.sender, ..) to emit RemoveLiquidity(_owner, ..).

2.3 Additional Recommendation

2.3.1 Incorrect Annotation in updateNodesBalance()

Status Fixed in Version 2

Introduced by Version 1

Description The annotation in the function updateNodesBalance() of the contract Staking is incorrect

(line 188).

188 /// @notice Update Withdrawal contract address
189 /// @dev Updater function
190 /// @notice Updates nodes total balance
191 /// @param _newNodesBalance Total current ETH balance from validators
192 function updateNodesBalance(uint _newNodesBalance) external onlyRole(UPDATER_ROLE)

Listing 2.8: Staking.sol

Suggestion I Revise the incorrect annotation.

2.3.2 Lack of Check on Address

Status Fixed in Version 2

Introduced by Version 1

Description Lack of zero address check before updating address variables in multiple places, such as

function initialize() and updateWithdrawal().

91 function initialize(
92 IDeposit _depositContract,
93 IERC20MetadataUpgradeable _weth,
94 address _treasury,
95 address _updater,
96 address _activator
97) external initializer {
98 __ERC4626_init(IERC20Upgradeable(_weth));
99 __ERC20_init("MetaPoolETH", "mpETH");

100 __AccessControl_init();
101 require(
102 _weth.decimals() == 18,
103 "wNative token error, implementation for 18 decimals"
104);
105 require(
106 address(this).balance == 0,

9

107 "Error initialize with no zero balance"
108);
109 _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
110 _grantRole(UPDATER_ROLE, _updater);
111 _grantRole(ACTIVATOR_ROLE, _activator);
112 updateRewardsFee(500);
113 treasury = _treasury;
114 depositContract = _depositContract;
115 nodesBalanceUnlockTime = uint64(block.timestamp);
116 }

Listing 2.9: Staking.sol

162 function updateWithdrawal(address payable _withdrawal)
163 external
164 onlyRole(DEFAULT_ADMIN_ROLE)
165 {
166 withdrawal = _withdrawal;
167 }

Listing 2.10: Staking.sol

Suggestion I Add zero address check before updating address variable.

2.3.3 Failure to Adhere to Checks-Effects-Interactions Pattern

Status Fixed in Version 2

Introduced by Version 1

Description In the function redeem(), the operation of sending Ether to the _receiver occurs before the

update of the ethBalance, which breaks the Checks-Effects-Interactions pattern.

173 function redeem(
174 uint _shares,
175 address _receiver,
176 address _owner
177) public virtual override nonReentrant returns (uint ETHToSend) {
178 if (msg.sender != _owner) {
179 _spendAllowance(_owner, msg.sender, _shares);
180 }
181 uint poolPercentage = (_shares * 1 ether) / totalSupply();
182 ETHToSend = (poolPercentage * ethBalance) / 1 ether;
183 uint mpETHToSend = (poolPercentage *
184 Staking(STAKING).balanceOf(address(this))) / 1 ether;
185 _burn(msg.sender, _shares);
186 payable(_receiver).sendValue(ETHToSend);
187 IERC20Upgradeable(STAKING).safeTransfer(_receiver, mpETHToSend);
188 ethBalance -= ETHToSend;
189 emit RemoveLiquidity(msg.sender, _shares, ETHToSend, mpETHToSend);
190 }

Listing 2.11: LiquidUnstakePool.sol

Suggestion I Send Ether to the _receiver after the ethBalance has been updated.

10

2.4 Notes

2.4.1 Potential Centralization Problem

Status Confirmed

Introduced by version 1

Description This project has potential centralization problems. The privileged role DEFAULT_ADMIN_ROLE

can change the contract address of liquidUnstakePool and withdrawal at any time. Meanwhile, the

privileged role ACTIVATOR_ROLE is able to call depositContract.deposit() to activate specified valida-

tors, by calling the pushToBeacon() function while the privileged role UPDATER_ROLE can upload a new

nodesTotalBalance to update the farming rewards received from Beacon Chain. We suggest these roles

should be in multi-signature.

Feedback from the Project The admin (i.e., DEFAULT_ADMIN_ROLE) will be managed by a multisig. Given

the architecture of Ethereum Beacon and consensus chain, there’s no way to do the calculation on-chain,

so UPDATER_ROLE needs to be assigned to an automated monitor bot collecting rewards and penalties in

the beacon chain.

2.4.2 Timely Triggering of Privileged Function pushToBeacon()

Status Confirmed

Introduced by version 1

Description The function pushToBeacon() allows the privileged role ACTIVATOR_ROLE to timely deposit

the staked funds into the Beacon Chain for earning. This function should be triggered timely. Otherwise,

the rewards will be less as expected and the withdrawals from users may also get stuck.

Feedback from the Project The call is automated and monitored. Timely execution is of utmost interest

to the protocol, so it is expected to be executed timely out of self interest.

2.4.3 Challenges in Achieving Real-time and Accurate Updates of Staking Rewards on
Beacon Chain

Status Confirmed

Introduced by version 1

Description The update of staking rewards earned from the Beacon Chain is not real-time, and has a

4-hour delay, which requires the UPDATER_ROLE to actively invoke the function updateNodesBalance() for

the update. In this case, the user’s rewards may differ from their expectations. If the UPDATER_ROLE fails

to update on time (i.e., every four hours), the rewards will be further reduced. The synchronization of the

amount rewards on the Beacon Chain is exclusively performed off-chain, as there are no alternatives avail-

able within the current architecture of Ethereum to facilitate on-chain calculations. All these require users

to have complete trust on the UPDATER_ROLE. However, a validation process is also implemented to ensure

that the updated balance does not deviate by more than +/-0.1%, which minimizing the aforementioned

error to a negligible extent.

Feedback from the Project Given the tx cost of Ethereum, It is not viable to update staking rewards
earned from the Beacon Chain “real-time”, nevertheless rewards for users are estimated by the second,

11

the contract has a “rewardsPerSecond” variable that takes care of this. Every 4 hours the rewards are

confirmed or adjusted. The report provided by the bot can be verified by everyone, meaning the

rewards are publicly informed by the Beacon Chain. The protocol provides the addresses required for

public verification.

2.4.4 Withdrawals might be Delayed if the Ethereum Network is Congested

Status Confirmed

Introduced by version 1

Description Users are allowed to withdraw their staked Ethers in the contract Withdrawal. In order to

successfully execute the withdrawal, two conditions must be met: 1) Sufficient time has elapsed, and 2)

There exists an adequate amount of Ethers within the contract.

Ethers are acquired through the disassemble of validators, and the disassembling delay of valida-

tors is not predetermined, but rather contingent upon network demand. Consequently, withdrawls might

encounter delays during periods of Ethereum network congestion.

12

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Denial of Service by Uninitialized System Parameters

	2.2 DeFi Security
	2.2.1 Lack of Check for rewardsFee
	2.2.2 Denial of Service by Redundant Check
	2.2.3 Stolen User’s Assets by Loss of Precision
	2.2.4 Lack of Check on Duplicate Nodes
	2.2.5 Incorrect Event Parameter

	2.3 Additional Recommendation
	2.3.1 Incorrect Annotation in updateNodesBalance()
	2.3.2 Lack of Check on Address
	2.3.3 Failure to Adhere to Checks-Effects-Interactions Pattern

	2.4 Notes
	2.4.1 Potential Centralization Problem
	2.4.2 Timely Triggering of Privileged Function pushToBeacon()
	2.4.3 Challenges in Achieving Real-time and Accurate Updates of Staking Rewards on Beacon Chain
	2.4.4 Withdrawals might be Delayed if the Ethereum Network is Congested

